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Experiments on strong interactions between solitary waves 
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Experiments 011 the interaction between solitary shallow-water waves propagating in 
the same direction have been performed in a rectangular channel. Two methods were 
devised to compensate for the dissipation of the waves in order to compare results 
with Hirota’s (1971) solution for the collision of solitons described by the Korteweg- 
de Vries equation. Both qualitative and quantitative agreement with theory is 
obtained using the proposed corrections for wave damping. 

1. Introduction 
In  Maxworthy (1976), where we were concerned with weaklyt interacting solitary 

waves, the measurements reported were in qualitative agreement with the analyses 
of Byatt-Smith (1971) and Oikawa & Yajima (1973) in that the waves experienced a 
backward shift and the maximum wave amplitude during interaction was greater 
than twice that of the initial waves. The major quantitative difference between theory 
and experiment was in the magnitude of the spatial phase shift; whereas the theories 
give a square-root dependence on wave amplitude, the measurements indicated a 
nearly constant spatial phase shift ( A X / h , -  -1 .2)  over a substantial range of 
amplitudes (0.1 < r / h ,  < 0.45). This led to the suggestion that the pair of Boussinesq 
equations (see Byatt-Smith 1971, equations (1.2) and (1.3),  for example) used to 
model the interaction were inadequate as a description of the large vertical accelera- 
tions observed. 

In  this paper we report on measurements of the strongt interaction which takes 
place when one solitary wave overtakes another of smaller amplitude travelling in the 
same direction. We now suspect that the Boussinesq equations are likely to be valid 
and, in this case, they reduce to the unidirectional Korteweg-de Vries (KdV) equation. 
Indeed, the careful measurements by Hammack & Segur (1974) on the evolution of 
solitary waves from a variety of initial displacements have verified the asymptotic 
behaviour predicted by the KdV equation. In  particular, the number of solitons 
which evolved and their asymptotic wave forms were found to be in essential agree- 
ment with the nonlinear theory. The present study will be seen to complement their 
important work. 

The exact solution of the KdV equation for multiple soliton collisions was first 
given by Hirota (1971) and is discussed in detail by Whitham (1974, pp. 580-585) for 
the case of an interaction between two waves. Prior to this, Lax (1968) had delineated 

t We adopt the adjectives weak and strong introduced by Miles (1977b) to differentiate 
between the short-time interaction of solitons colliding head-on and the long-time interaction 
between solitons travelling in the same direction. 
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(a)  I <  u < f ( 3 + 5 9  

FIGURE 1. Illustrations of the three types of KdV interaction according to Lax (1968). 

the three possible types of KdV interaction, which he called classes (a) ,  ( b )  and (c), 
a notation which we also employ. Each type of interaction is illustrated in figure 1 ,  
where we have plotted Hirota’s (1971)  solution up to  the middle of the interaction, 
t = 0. The different cases can be classified according to the amplitude ratio cr = a2/a1, 
where a1 and a2 (a,  > al) represent the dimensional wave amplitudes ql and qa 
normalized by the still-water depth h,. Although the interaction phenomena have been 
described by several authors (for a particularly novel interpretation, see Kruskal 
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1974), Lax’s class ( b )  is sometimes neglected. For the small range of relative amplitudes 
corresponding to this case, the faster wave tries to engulf the slower one, and in fact 
the small amplitude wave loses its crest only to regain it just prior to the middle of 
the interaction. The theory shows that in every case the larger wave experiences a 
forward shift while the smaller wave undergoes a backward shift as a result of the 
interaction. The purpose of the present investigation is to test these predictions 
experimentally. 

The apparatus used to perform the experiment is described in Q 2. In  3 3 we discuss 
the problem of dissipation and propose two ways to account for it in order to estimate 
the non-dissipative phase shifts. The results, including mid-interaction amplitude 
measurements, are presented in Q 4 and in 0 5 we offer some concluding remarks. 

2. Apparatus and data acquisition 
The rectangular lucite channel (20 ern wide x 30 cm deep) used was essentially the 

one described by Maxworthy (1976) except that additional 1.75 m sections were added 
to provide a working length of more than 14 m. The channel could be levelled to 
within better than 2.0 mm over its entire length with the aid of adjustable screws 
supporting each section. 

The single most essential improvement in the facility was the development of a 
piston-action wave maker, with controlling electronics designed to produce repeatable 
initial wave forms. The wave maker, sketched in figure 2, consisted of a rectangular 
Plexiglas piston mounted a t  one end of a stainless-steel shaft guided by two split 
linear bearings mounted on an extension of the last channel section. A geared rack 
was inlaid along the top of the shaft so that i t  moved in the split of the linear bearings, 
and the system was driven by a reversible 12 V d.c. motor via a pinion that engaged 
the rack. Weather-stripping provided a flexible seal for the piston and a Teflon film 
coating the channel walls in the driver section kept the frictional force on the plunger 
to a minimum. 

The magnitude of the current applied to the motor determined the piston velocity, 
and an electronic circuit was designed to monitor the following features: (i) length of 
primary stroke; (ii) velocity of primary stroke; (iii) time delay between strokes; (iv) 
length of secondary stroke; (v) velocity of secondary stroke. ,4 10-turn potentiometer 
geared to the rack provided positioning information to the control circuit. With 
these controls alone, one could generate two square waves of velocity vs. time as 
depicted by the solid-line sketch above the piston in figure 2. Variable capacitors 
were included to control the rise and decay times of the current to the motor, thus 
providing a certain amount of wave shaping. The dashed-line velocity profile exhibits 
the modified piston action with this additional degree of freedom. 

Position-time measurements of the wave crests were obtained photographically. 
To avoid parallax problems, a grid (0.5 x 2.0 cm) was prepared with waterproof ink 
on the inside wall of the channel over its entire length. A remotely controlled Nikon 
camera, triggered by a reed relay, was mounted on a trolley and pushed along beside 
the channel to follow the waves. The relay was fired by a pulse from a function gen- 
erator and accurate time-intervaI measurements were obtained with a timer-counter. 
Tap water, used as the working medium, was dyed green in order to produce a sharp 
definition of the free surface along the side wall. 
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Electrical lead-outs 
to control circuit 

Motor 1 Position 

FIGURE 2. Diagram of the piston wave maker. The velocity history of the piston V, is sketched 
for both the shaped (dashed line) and the unshaped (solid line) mode of operation. 

3. Compensating for the effects of dissipation 
After some initial experimentation, disturbances could be generated which rapidly 

evolved (after having travelled a distance of two wavelengths or less) into solitary 
waves followed by barely perceptible dispersive wave trains. These ‘solitons ’, how- 
ever, were subject to dissipation from various sources, and consequently the amplitude 
and speed of the waves diminished during their travel down the test section. Apart 
from the obvious source, that of viscous dissipation at the solid boundaries, small 
‘ capillary ’ waves formed on the main wave crest at an oblique angle to the side walls 
and represented an additional loss of energy. These wavelets originated from hysteresis 
effects of the meniscus at the water-air-lucite contact line. 

In figure 3 we compare typical amplitude attenuation measurements in our facility 
with Keulegan’s (1948) theory for the damping of solitary waves propagating down 
a rectangular channel. The trend of our experimental data with the parameter vo/ho 
is in accord with the theory, but we measured substantially greater attenuation. A 
discussion of this point and a comparison of our results with measurements reported 
in prior investigations is given in the appendix. 

In  order to extract estimates of the non-dissipative phase shifts, we have devised 
two means of correcting for the observed wave dissipation. The application of these 
compensation methods, described in the following two subsections, does not depend 
on the sources of dissipation, but assumes only that the dissipation takes place 
gradually and continuously along the channel. Furthermore, the two correction 
techniques can be used to check one against the other. 

3.1. Wave propagation in a channel of constant width 

Trajectories of typical large and small amplitude waves are plotted in figure 4 in an 
6, z plane, where 6 = z - c o t  and co = (gho)* is the linear long-wave speed. The open 
and solid symbols represent data from two different runs and one can see that the 
reproducibility of the waves is good. The variable 6 is now a sensitive measure of 
nonlinear effects since we have subtracted out the distance travelled by a linear wave. 
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FIGURE 3. Amplitude attenuation of the solitary waves in the constant-width channel. 4, 
qo/ho = 0.25, h, = 8.1 cm; 5 ,  ~ , / h ,  = 0.36, h, = 5.0cm; $, qO/h, = 0.43, h, = 4.0cm. 
The corresponding theoretical results due to Keulegan (1948) are also included. 
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FIGURE 4. Non-interacting 5, z trajectories of the primary (slow) and secondary (fast) waves 
produced by the wave maker in the constant-width channel. The open and solid symbols 
represent two separate runs. Tangents are drawn at  z = 6.25 m, corresponding to the inter- 
action centre in figure 6, and a typical correction for dissipation is indicated. 
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FIGURE 5 .  Wave speed as a function of amplitude. 0, 0 ,  h, = 5.0 cm; A, h, = 6.0 om; 0, 
h, = 7.0 cm; b , h, = 8.1 cm. First- and second-order theoretical results due to Laitone (1960) 
are given by the dashed and solid curves respectively. 

Moreover, the nonlinear wave speed c(x)  at each downstream position can be accurately 
calculated from the formula 

where s(x) is the local slope of the trajectory. The measured variation of wave speed 
with wave amplitude is presented in figure 5 .  Henceforth measurements performed 
in the constant-width channel will be plotted as open symbols, while those obtained 
from the converging channel (to be discussed in $3.2)  will be plotted as solid circles. 
The amplitudes in figure 5 were taken from best-fit curves drawn through the measured 
data (e.g. figure 3) and the velocities were computed from (3.1) using the local 
measured trajectory slope. First- and second-order theoretical results for a solitary 
wave are given by the dashed and solid curves, respectively. We see that there is 
close agreement with Laitone's (1960) higher-order result 

c(x) = (gho)*/(1-45))7 (3.1) 

c = (gho)*(1+*a-&a2+ ...), ( 3 4  

and this confirms the self-similar nature of slowly dissipating shallow-water solitary 
waves already noted by French (1969) and Hammack & Segur (1974). 

Figure 6 shows the t, x trajectories (open symbols) for the interaction between the 
two waves corresponding to figure 4. Now we are in a position to account for the dissi- 
pation and the method proceeds as follows. First we define the 'interaction centre' 
(I.C.) as the x station where the vertical difference between the interacting trajectories 
is a minimum, and this is marked by the vertical line at  x = 6.25 m for our example in 
figure 6. (In each experiment we found that the photographs which straddled the 
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FIGURE 6. Interacting 6 ,  2 trajectories (open circles) for the primary and secondary waves in 
the constant-width channel. Parallel lines are constructed through the data corrected for dissi- 
pation (solid squares). A[, and A &  are indicative of the spatial phase shifts. See text for details. 

I.C. possessed the most symmetric wave forms, thus confirming that the I.C. defined 
here is essentially the middle of the interaction, as illustrated in figure 1 . )  Next, the 
tangents to the non-interacting 6, x trajectories of each wave are drawn at  the I.C., 
as shown in figure 4. Then the vertical deviations between the individual trajectories 
and their tangents (figure 4) are used to correct the interacting trajectories (figure 6) 
far from the I.C., where the interaction either has not yet started or is virtually 
complete. For those experiments in which the waves experience a complete inter- 
action, asymptotic parallel lines can be constructed through the corrected data 
(solid squares), as indicated in figure 6. Knowing the slopes s, and s, of the asymptotes, 
one can recover the effective amplitudes a1 and 01, for the interaction by inverting 
(3.2) and using (3.1), viz. 

ai = ~ { 1 0 - [ 1 0 0 - 2 4 0 ~ ~ / ( l - ~ ~ ) ] * } ,  i = 1,2.  (3.3) 

For the example under consideration we have s1 = 0.101 and s, = 0.155, which gives 
a, = 0.242 and 01, = 0.419. Finally, the spatial phase shifts AX, and AX2 are obtained 
by transforming the four asymptotic lines from the 6,x plane to the 6, t plane and 
measuring directly the 6 displacement between each pair of parallel lines. The results 
for this case are AX, = -24.0 cm for the slow wave and AX, = 14-5 cm for the fast 
wave. These measurements can then be compared with the theoretical non-dissipative 
spatial phase shifts calculated from the effective amplitudes using the equation (cf. 
Whitham 1974) 
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FIQWRE 7. Interaction trajectories in the 5, t plane for the converging channel. AX,  and AX2, 
measured between the parallel asymptotic trajectories, give the spatial phase shifts. See text 
for details. 

where the ordered signs correspond to the indices i = 1,2,  respectively. Equation 
(3.4) yields AXl = - 21.1 cm and AX, = 16.0 cm for our example. 

3.2, Wave propagation in a gradually Converging channel 

As we have seen in the previous subsection, when a solitary wave propagates in a 
channel of constant width and depth its amplitude and wave speed decrease, while 
the volume of fluid represented by this decrease must be left behind as a small free- 
surface elevation. In  order to compensate for this loss and maintain a more constant 
wave amplitude, two courses are open. The first of these is to decrease the fluid height, 
in a channel with a sloping bottom, but this has the undesirable effect of changing 
the zeroth-order wave speed (gh,)*. The second, to decrease the channel width in 
order to maintain the energy per unit width almost constant, is practical, can be 
justified a priori and can be validated a posteriori. Just as the solitary wave remains 
self-similar if the dissipation is small, so it must also do so if the convergence of the 
channel is so gradual that the basic nonlinear-dispersive balance is not upset. 

In  order to check these assumptions experimentally, the apparatus shown in figure 
2 was modified by placing a second side wall at  a slight angle to the other in such a 
way that the breadth of the channel varied linearly with downstream distance from 
20.4 cm a t  the initial station to 8.1 cm a t  the 14 m station. The effectiveness of this 
scheme was realized in an almost constant amplitude propagation for the smaller 
waves, while the largest waves decreased in amplitude by no more than 10% over 
the entire length of the channel. In  fact, for most cases the correctiondiscussedin 5 3.1, 
applied to these interacting trajectories, contributed an insignificant amount. One 
such case is displayed in an 6,  t diagram in figure 7. The phase shifts measured directly 
from this figure give AX, = - 22 cm and AX, = 21 cm, while the corresponding 
theoretical phase shifts are AXl = - 26 cm and AX, = 18.5 cm. 
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FIGURE 8. Comparison between the measured spatial phase shifts and those calculated using 
the effective amplitudes a1 and a2. $, h, = 4.0 em; 9, h, = 4.5 em; $, I ,  h, = 5.0 cm; 
$, h, = 5.5 em; 4, h, = 6.0 em. The solid circles correspond t,o experiments performed in 
the converging channel. 

4. Presentation of results 
A series of interaction experiments covering the range 1.2 < (r < 2.7 in the constant- 

width channel and the range 1.6 < (r < 5.0 in the converging channel was performed. 
In  the former, the still-water depth ranged from 4.0 cm to 6.0 cm and the estimates of 
the non-dissipative phase shifts were obtained by the method discussed in $3.1. The 
experiments in the converging channel, on the other hand, all had a still-water depth 
of 5-0  cm and bhe spatial phase shifts were obtained directly from a plot of the 6,  t 
interaction trajectories. When necessary, a small adjustment of the asymptotic slopes 
about the I.C. was made to account for the slight wave attenuation. In  both experi- 
ments the time delay between waves was set to locate the I.C. approximately at  
the mid-channel station so that sufficient data could be collected to determine the 
pre- and post-interaction trajectories unambiguously. 

The data on the spatial phase shifts are presented in figure 8. Here we compare our 
measured results with the spatial phase shifts calculated from (3.4) using the effective 
wave amplitudes a, and a2. The vertica.1 error bars indicate the variations in measure- 
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FIGURE 9. Angular phase shift as a function of the wave amplitude ratio. Solid lines correspond 
to the theoretical solution due to Hirota (1971). Symbols ag in figure 8. 

ments of the separation distance between the constructed parallel asymptotic 
trajectories. The data with horizontal error bars correspond to the largest measured 
amplitude ratios (CT > 3), and these error bars estimate the uncertainty in the ampli- 
tude measurements for the relatively small waves needed to achieve this condition. 
It is clear that, since the maximum amplitude for a stable solitary wave is a2 2: 0.7 
(see, for example, Laitone 19GO), relatively large values of u can be obtained only by 
decreasing the amplitude of the smaller, a1 wave. 

As an alternative presentation, we plot in figure 9 the 'angular' phase shift 

and note that theoretically it depends only on the amplitude ratio CT. The data from 
our two channels are in agreement in their region of overlap, 1-6 < u < 2.7, each 
lending support to the other as a viable method to account for the dissipation of the 
system. Both the spatial and the angular phase shift measurements in figures 8 and 
9 are generally in good agreement with theory. We do note, however, some differ- 
ences for the smaller wave for u > 3. Our experience suggests that the photographic 
method of data acquisition becomes less reliable in tracking the crests of these rela- 
tively long flat waves, but this alone cannot entirely explain the observed discrep- 
ancies. (Phase shift measurements obtained using a string of electronic probes placed 
along the channel centre-line would help to resolve this problem.) 

The photographs in figures 10 and 1 1  (plates 1 and 2) provide examples of the three 
types of KdV interaction discussed by Lax (1968). The waves are travelling from 
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FIQURE 12. Mid-interaction amplitudes as a function of u. Data points plotted one directly 
above the other for u < 3 correspond to peak and trough amplitudes, respectively. The 
theoretical curves are derived from Hirota's (1971) exact sollition. Symbols as in figure 8. 
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FIGURE 13. Separation distance between peaks at the middle of the interaction. The theoretical 
result obtained numerically from Hirota's (1971) solution is given by the solid line. Symbols 
as in figure 8. 
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right to left in each case and time increases vertically downwards. In  figure 10 the 
exposures were taken at  equal time intervals and are aligned to exhibit the forward 
and rearward phase shifts. Here cr = 2.04, corresponding to case ( a )  in figure 1, 
where the peaks remain distinctly separate throughout the interaction. Exposures 
(a)-(e) in figure 11 are for v = 2.56, which is close to Lax’s case ( b )  illustrated in figure 1. 
When figure 1 1  is viewed on edge to foreshorten the x co-ordinate, one can see that 
the small amplitude wave loses its crest in figures 1 1  (c) and ( d ) ,  but then regains it 
to form a symmetric double-crested wave form at the I.C. in figure 11 ( e ) .  The short 
sequence in figures 11 ( f ) - (h)  for cr = 4.9 is an example of Lax’s case (c) interaction. 
Here the large amplitude wave completely overrides the smaller wave to form a 
single peak at  the I.C. in figure 11 ( h ) .  

Measurements characterizing the mid-interaction geometry have been obtained 
from the photographs exhibiting the most symmetric wave form in each interaction 
experiment (e.g. the middle frame in figure 10 and frames ( e )  and (h)  in figure 11) .  
Our experimental values of the peak amplitude qr and trough amplitude qT at the 
I.C. are compared with results derived from Hirota’s (1971) solution in figure 12. 
One can readily show that the trough amplitude (which becomes the peak amplitude 
for u > 3) is given by 

3% = rlT/%h, = (a- l)/c (4.2) 

while the peak amplitude in figure 12 was determined by an iteration procedure. 
The peak-to-peak distance A X p - p  between the wave crests at the I.C. has also 
been measured and is compared with the theoretical result in figure 13. 

5. Summary and conclusion 
Shallow-water wave experiments have been performed with the aim of testing 

Hirota’s (1971) solution for the interaction of isolated solitons described by the KdV 
equation. Since the theory is inviscid, we have devised two methods of approximately 
correcting for dissipative effects, which, as pointed out in the appendix, were par- 
ticularly important for waves propagating on the shallow fluid layers in our relatively 
narrow Plexiglas channel. For the constant-width channel we have used the measured 
amplitude decay of the individual, non-interacting waves to correct their asymptotic 
interaction trajectories. In  the second method, we have allowed the channel walls to 
converge slightly in such a way as to maintain an almost constant amplitude pro- 
pagation of the individual waves. Application of these corrective measures gives rise 
to ‘effective ’ wave amplitudes which characterize the interaction and provide the 
basis for comparison with theory. 

We have already noted the agreement in figure 9 between the angular phase shift 
measurements obtained from our two compensation techniques. Within experimental 
error we also note substantial agreement with the theoretical logarithmic curve over 
a large range of v. The success of our tedious correction described in Q 3.1 is not so 
surprising when one remembers that the fore and aft angular phase shifts depend only 
on the ratio of the wave amplitudes. Thus, although the dissipation may be large 
over the distances necessary to complete an interaction, each wave suffers a comparable 
degradation such that the variation in cr is small. The spatial phase shifts in figure 8, 
on the other hand, as well as the peak and trough amplitudes in figure 12, depend on 
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the actual wave amplitudes, and this explains the increased scatter found in these 
data. 

The amplitude error bars in figure 12 do not include estimates of the meniscus effect 
at the side wall, and we have implicitly assumed that the effective amplitude ratio in 
figures 1.2 and 13 represents the true (but unknown) instantaneous value at  the I.C. 
In  spite of these shortcomings, the measured characteristics of the mid-interaction 
wave-form geometry are seen to exhibit the expected theoretical trends. 

In  conclusion, the experimental results provide good qualitative as well as quanti- 
tative agreement with KdV theory for collisions between two solitary waves pro- 
pagating in the same direction. We have been able to produce each of the three 
interactions discussed by Lax (1968) and it is satisfying that we can actually discern 
a class ( b )  type of interaction. Most of the observed differences between theory and 
experiment can be attributed, at  least in part, to our averaging technique, which was 
necessary in order to make meaningful comparisons with Hirota’s (1971) solution. 
However, we cannot rule out the possible need for higher-order theoretical corrections 
since some of the effective amplitudes in our experiment approached a value of 0.5. 

We are grateful to our colleague Larry Redekopp for helpful discussions throughout 
the course of this experiment. We also recognize and appreciate the assistance of our 
laboratory technician, Casey de Vries. The electronic circuit controlling the wave 
maker was designed and built by Tim Jentes. This work was supported by the National 
Aeronautics and Space Administration, Planetary Atmospheres Branch, under grant 
NGR-05-0 18- 178. 

Appendix 
This section is provided to address some questions of general interest raised by the 

referees of this paper concerning our dissipation measurements. In  particular, we 
endeavour to explain apparent discrepancies between our measurements and those 
of prior investigators, which are sometimes in agreement with Keulegan’s ( 1948) 
theory. 

Keulegan’s analysis combines the nonlinear aspects of small amplitude solitary 
waves with linearized laminar boundary-layer theory. A simple wetted-surface 
approximation is used to account for side-wall dissipation withoub regard for the 
wetted surface of the wave itself. Keulegan has not attempted to model the viscous 
dissipation at  the free surface caused by contamination and surface-tension 
effects, nor has he considered the problem of capillary hysteresis mentioned in $3.  
Nonetheless, Keulegan’s inverse fourth-power law has been used as a guideline for 
this by and large unresolved problem. Several authors have since rederived the 
inverse fourth-power law with some variation in the proportionality constant (e.g. 
Iwasa 1959), and the most recent exposition is probably that due to Miles ( 1 9 7 7 ~ ) .  
From the above considerations, one would perhaps expect Keulegan’s theory to 
overpredict the wave amplitudes since his analysis neglects dissipation mechanisms 
which may be of considerable importance. We shall not attempt to analyse all the 
possible contributing factors, but a comparison of our measurements with prior 
experimental work is worthwhile. 

The amplitudes measured in our facility are as much as 15% (at h, = 8.1 em), 
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25% (at h, = 5.0 cm) and 40% (at h, = 4-0 cm) smaller than those predicted (see 
figure 3). Dissipation measurements have also been reported by Ippen, Kulin & Raza 
(1955), French (1969) and Hammack & Segur (1974). French compares his measure- 
ments with those of Ippen et al. in figure 6.11 of his report. The combined measurements 
show amplitudes ranging from 4 %  above (8 data points) to 18% below (38 data 
points) Keulegan’s prediction. Moreover, while about half of the data (generally at  
large fluid depths, h, 2 15 cm) can be considered to agree with the theory, the remain- 
ing half of the data (generally at small fluid depths, h, < 15 cm) represents dissipations 
considerably in excess of those predicted by Keulegan. The largest discrepancies are 
reported at  depths of 9 cm and 12 cm, only slightly larger than the depths 

4 cm < h, < 8 cm 

used in the present experiment. It is also evident that the relatively large scatter in 
these data cannot be accounted for by a simple change in Keulegan’s proportionality 
constant. Hammack & Segur, on the other hand, present results (at h, = 5.0 cm) 
which can be used to infer that the amplitudes of the leading solitons which emerge 
from their initial disturbances are 5-20 % greater than Keulegan’s prediction, in 
contradiction to the results cited above for only slightly larger fluid depths. One must 
be careful to realize, however, that no direct measurements for an isolated solitary 
wave were reported by Hammack & Segur, and for this reason their results can be 
only suggestive of dissipation trends. 

Capillary hysteresis may have contributed measurably to the decay of solitary 
waves in our Plexiglas channel and also in the lucite channel used by Ippen et al. 
The production of capillary waves at  the side walls is a manifestation of energy lost 
from the main wave, but there may be other, less obvious frictional effects which 
critically depend on conditions at  the air-water-lucite contact line. Experiments 
performed by Keulegan (1959), for example, show that the dissipation of standing 
waves in a lucite basin is ‘much greater in comparison to that in a glass basin’, and 
the investigation by Miles (1967) supports the idea that this result is due to capillary 
hysteresis. There is no evidence which suggests that these effects can be neglected for 
free-surface waves propagating in rectangular channels. 

We see that the dissipation of solitary waves in a rectangular channel is a difficult 
and as yet unresolved problem. Carefully controlled experiments are needed to 
determine the relative importance of the various dissipative mechanisms. This in- 
formation can then be used to motivate future analytical studies and may also provide 
a basis of comparison for results obtained in different experimental facilities. 

P .  D .  Weidman and T .  Maxworthy 
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FIGURE 10. Photographio sequence exhibiting a class (a) interaction for Q = 2-04. The waves 
propagate from right to left and time increases downwards at 1.0 s intervals. 

WEIDMAN AND MAXWORTHY (Facing p .  432) 
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FIUURE 11. The sequence (a)-(e) is for u = 2-56, approximately corresponding to a class (b)  
interaction. The sequence (f)-(h) is for c = 4.9 and is indicative of m clam ( 0 )  interaction. The 
last photograph in each sequence corresponds to the intermction centre (I. C.). 
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